04C12	1.193 (1)	C17—C18	1.375 (1)
05C19	1.222 (1)	C19—C20	1.464 (1)
C8C9	1.376 (1)	C20—C21	1.393 (1)
06C15	1.364 (1)	C20—C25	1.408 (1)
06C21	1.376 (1)	C21—C22	1.388 (1)
C9C10	1.374 (1)	C22—C23	1.380 (1)
C1C2	1.511 (1)	C23—C24	1.388 (1)
C10C11	1.391 (1)	C24—C25	1.377 (1)
$\begin{array}{c} C4-O1-C5\\ C9-O3-C12\\ C15-O6-C21\\ C1-C2-C3\\ C2-C3-C4\\ O1-C4-C3\\ O1-C5-O2\\ O1-C5-C6\\ O2-C5-C6\\ O2-C5-C6-C7\\ C5-C6-C1\\ C5-C6-C1\\ C7-C8\\ C7-C8\\ C7-C8\\ C9-C10\\ C8-C9-C10\\ C9-C10-C11\\ C6-C1-C11\\ C6-C1-C10\\ O3-C12-O4\\ O3-C12-C13\\ O4-C12-C13\\ C12-C13\\ C12-C12\\ C12-C13\\ C12-C13\\ C12-C12\\ C12-C13\\ C12-C13\\ C12-C12\\ C12-$	115.65 (6) 120.31 (6) 118.89 (6) 112.92 (9) 112.18 (8) 108.26 (7) 123.13 (7) 113.37 (7) 123.50 (8) 117.92 (7) 122.51 (7) 119.56 (7) 120.40 (8) 115.45 (7) 122.01 (7) 122.38 (7) 118.31 (7) 122.38 (7) 118.31 (7) 120.61 (8) 124.66 (7) 110.64 (6) 124.70 (7) 121.27 (7) 118.26 (6)	$\begin{array}{cccccc} C14C13C18\\ C13C14C15\\ O6C15C16\\ C15C16\\ C15C16\\ C15C16C19\\ C17C16C19\\ C17C16C19\\ C17C18\\ C13C18C17\\ O5C19C16\\ O5C19C20\\ C16C19C20\\ C16C19C20\\ C19C20C25\\ C21C20C25\\ C21C20\\ C25C22\\ C20C21C22\\ C20C21C22\\ C20C21C22\\ C20C21C22\\ C20C21C22\\ C20C23C24\\ C23C24C25\\ C20C25C24\\ \end{array}$	120.67 (7) 118.77 (7) 115.42 (6) 123.17 (6) 121.41 (7) 118.57 (6) 119.99 (6) 121.43 (7) 120.73 (7) 123.51 (7) 113.82 (7) 123.51 (7) 114.66 (6) 120.49 (6) 121.35 (7) 118.16 (7) 122.61 (7) 115.57 (7) 118.76 (8) 120.48 (8) 120.48 (8) 120.10 (8)
C4-01-C5-C6	-178.6 (1) $129.1 (1)$ $-55.4 (2)$ $179.8 (1)$ $-3.3 (2)$ $4.8 (2)$	C15C16C19C20	2.8 (2)
C12-03-C9-C8		O1C5C6C7	178.2 (1)
C12-03-C9-C10		O1C5C6C11	-0.6 (2)
C9-03-C12-C13		C16C19C20C21	-1.3 (2)
C21-06-C15-C16		O3C12C13C14	-4.4 (2)
C15-06-C21-C20		O3C12C13C18	176.8 (1)

Data collection: *SDP* package (Enraf-Nonius, 1985). Cell refinement: *SDP* package. Data reduction: *SDP* package. Program(s) used to solve structure: *SIR*88 (Burla *et al.*, 1989). Program(s) used to refine structure: *SDP* package. Molecular graphics: *ORTEPII* (Johnson, 1976) and *PLUTO* (Motherwell & Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kricheldorf, H. R., Schwarz, G. & Ruhser, F. (1988). J. Polym. Sci. Polym. Chem. Ed. 26, 1621–1628.
- Lumbroso, H., Curé. J. & Evers, M. (1986). Z. Naturforsch. Teil A, 41, 1250-1257.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Onuma, S., Iijima, K. & Oonishi, I. (1990). Acta Cryst. C46, 1725– 1727.
- Stout, G. H. & Jensen, L. H. (1989). X-ray Structure Determination, p. 393. New York: Wiley Interscience.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 1213-1215

Bis(*para*-phénolammonium) Diphosphate Monohydrate

EL HASSANE SOUMHI ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie

(Reçu le 27 août 1994, accepté le 12 octobre 1994)

Abstract

The structure of the title compound, bis(4-hydroxyphenylammonium) dihydrogen diphosphate monohydrate, $2C_6H_8NO^+.H_2P_2O_7^{-1}.H_2O$, consists of alternately stacked organic and inorganic sheets connected by a three-dimensional network of hydrogen bonds. N— $H \cdots O$ and O— $H \cdots O$ hydrogen bonds are responsible for the cohesion in the inorganic sheets.

Commentaire

De nombreux mono- ou cyclophosphates de différents cations organiques sont actuellement connus. En revanche trés peu de diphosphates ont été étudiés (Averbuch-Pouchot & Durif, 1992*a,b*, 1993; Adams & Ramdas, 1976, 1977, 1978; Kammoun, Jouini & Daoud, 1992; Kammoun, Jouini, Debbabi & Daoud, 1990). Nous décrivons dans ce travail la préparation et la structure cristalline du diphosphate $(1,4-HO-C_6H_4-NH_3)_2H_2P_2O_7,H_2O$, (I). La Fig. 2 représente la projection de l'ensemble de l'arrangement atomique de ce sel sur le plan *ac*. On y observe des couches alternées inorganiques et organiques perpendiculaires à la direction [100].

Groupement dihydrogénodiphosphate: les valeurs extrêmes des liaisons P—O, 1,606 (1) et 1,485 (2) Å, sont voisines de celles observées pour des composés analogues connus (Averbuch-Pouchot & Durif, 1992a, 1993). La plus longue distance (1,606 Å) correspond à l'atome d'O liant P—O(L), la distance intermédiaire [1,563(2) Å] à celui porteur d'hydrogène P—OH et les deux courtes (1,493 et 1,485 Å) aux deux atomes d'O externes P—O(E). L'angle P—O—P est de 129,9 (2)°. Les valeurs moyennes calculées des indices de distorsion des différents angles et liaisons dans les tétraèdres PO₄ selon la méthode décrite par Baur (1974) sont ID(PO) = 0,031, ID(OPO) = 0,038, ID(OO) = 0,015.

Fig. 1. Vue en perspective de la structure du bis(*para*-phénolammonium) diphosphate monohydrate. Les ellipsoïdes correspondent à 50% probabilité sauf pour les atomes d'H où les diametres sont arbitaires.

La distorsion des distances P—O par rapport à celles de $O \cdot \cdot O$ montre que les tétraèdres des groupements diphosphates sont déformés et que les atomes de phosphore sont décalés des centres de gravité.

Groupement organique: c'est le cation para-phénolammonium (HOC₆H₄NH₃)⁺. La maille élémentaire en renferme huit, disposés par moitié de part et d'autre d'une couche inorganique (Fig. 2). Les trois protons de l'azote participent à trois liaisons par pont hydrogène respectivement de type N—H(1N)···O(E1), N—H(3N)···O(E2) et N—H(2N)···O(W). Le groupement OH du cation organique exerce deux liaisons hydrogène. Il est donneur dans O(E3)—H(OE3)···O(5) et accepteur dans O(5)—H(O5)···O(E2).

Molécules d'eau: la maille élémentaire en renferme huit. Elles viennent s'intercaler par paires dans les couches inorganiques. Chaque paire de molécules d'eau est entourée de deux groupements $(H_2P_2O_7)^{2-}$ d'une même couche et de deux groupements organiques appartenant à deux couches différentes avec lesquels elle forme les liaisons hydrogène: O(W)— $H(1W) \cdots O(E1)$, O(W)— $H(2W) \cdots O(E1)$ et $O(W) \cdots H(2N)$.

Liaisons hydrogène: les groupements H₂P₂O₇ sont connectés par des liaisons hydrogène formées avec les deux substituants NH₃ et OH du cation organique et avec les molécules d'eau. En se basant sur le critère habituel des distances $d_{O(N)}$..._O (Brown, 1976; Blessing, 1986), on peut mettre en évidence: deux liaisons hydrogène fortes (d_0 ..._O < 2,73 Å), O(5)... O(E2) [2,583 (2) Å] et O(E3)...O(5) [2,609 (3) Å], et cinq relativement faibles, dont trois sont de type

Fig. 2. Projection selon l'axe b de la structure du bis(para-phénolammonium) diphosphate monohydrate.

N···O [N···O(W) 2,825 (4), N···O(E1) 2,845 (3) Å et N···O(E2) 2,835 (3) Å] et deux de type O(W)···O(E1) [de distances respectives 2,935 (3) et 2,996 (4) Å]. Les groupements organiques ne sont pas directement liés entre eux. Leurs substituants en position *para* leurs permettent de former des liaisons avec les deux couches inorganiques entre lesquelles ils sont intercalés. Il en résulte que la cohésion de la structure est assurée par un système tridimensionnel de liaison hydrogène.

Partie expérimentale

L'acide diphosphorique $H_4P_2O_7$ est préparé par passage d'une solution concentrée de diphosphate de sodium, Na₄P₂O₇, à travers une colonne de résine échangeuse d'ions, de type Amberlite *IR*120. Il est immédiatement neutralisé par addition d'une solution de *para*-phénolamine. Le mélange est ensuite filtré et abandonné à la température ambiante. Il laisse déposer au bout de quelques jours des cristaux de bis(*para*phénolammonium) diphosphate monohydrate en forme de plaquettes incolores.

Données cristallines

$2C_6H_8NO^+,H_2P_2O_7^{2-},-$
H ₂ O
$M_r = 414,24$
Monoclinique
C2/c
a = 22.9337 (5) Å
b = 5,8035 (6) Å
c = 13,7842 (6) Å
$\beta = 106.816 (4)^{\circ}$
V = 1756.2 (2) Å ³
Z = 4
$D_x = 1,567 \text{ Mg m}^{-3}$
Collection des données
Diffractomètre CAD-4
Balayage $\omega/2\theta$
Correction d'absorption:
aucune
1613 réflexions mesurées
1538 réflexions
indépendantes
1250 réflexions observées
$[I > 2\sigma(I)]$

Affinement à partir des F^2 $R[F^2 > 2\sigma(F^2)] = 0,0379$ $wR(F^2) = 0,0926$ S = 1,2901538 réflexions 168 paramètres Tous les paramètres des atomes d'hydrogène affinés $w = 1/[\sigma^2(F_o^2) + (0,0366P)^2 + 2,4224P]$ où $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0,003$ Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Paramètres de la maille à l'aide de 25 réflexions $\theta = 14-16^{\circ}$ $\mu = 0.304$ mm⁻¹ T = 293 (2) K Prisme $0.4 \times 0.4 \times 0.2$ mm Incolore

- $R_{int} = 0.0182$ $\theta_{max} = 24.98^{\circ}$ $h = -26 \rightarrow 26$ $k = 0 \rightarrow 6$ $l = 0 \rightarrow 16$ 3 réflexions de référence fréquence: 120 min variation d'intensité: 1,0%
- $\begin{array}{l} \Delta\rho_{\rm max}=0.239\ {\rm e}\ {\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.274\ {\rm e}\ {\rm \AA}^{-3}\\ {\rm Correction}\ {\rm d}^{\,\rm extinction:}\\ SHELXL93\ ({\rm Sheldrick,}\\ 1993)\\ {\rm Coefficient}\ {\rm d}^{\,\rm extinction:}\\ 0.0006\ (5)\\ {\rm Facteurs}\ {\rm de}\ {\rm diffusion}\ {\rm des}\\ International\ Tables\ for\\ Crystallography\ (1992,\\ {\rm Tome}\ {\rm C},\ {\rm Tableaux}\\ 4.2.6.8\ {\rm et}\ 6.1.1.4)\\ \end{array}$

Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotrope équivalents (Ų)

$U_{\text{éq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Z	$U_{\ell \alpha}$
Р	0,44353 (3)	0,19010 (13)	0,66749 (5)	0,0242 (2)
O(E1)	0,46628 (8)	0,0407 (4)	0,59883 (14)	0,0348 (5)
O(E2)	0,40353 (8)	0,0857 (4)	0,72402 (14)	0,0360 (5)
O(E3)	0,41302 (9)	0,4030 (4)	0,60329 (15)	0,0390 (6)
O(L)	1/2	0,3072 (5)	3/4	0,0252 (6)
O(5)	0,15305 (8)	-0,2026 (4)	0,3345 (2)	0,0337 (5)
O(W)	0,44727 (12)	-0,6746 (5)	0,4109 (2)	0,0525 (7)
Ν	0,40647 (10)	-0,2192 (5)	0,4232 (2)	0,0279 (5)
C(1)	0,33994 (11)	-0,2201 (5)	0,4052 (2)	0,0248 (6)
C(2)	0,30731 (12)	-0,4091 (5)	0,3597 (2)	0,0280 (6)
C(3)	0,24430 (12)	-0,4070 (5)	0,3359 (2)	0,0272 (6)
C(4)	0,21509 (11)	-0,2156 (5)	0,3590 (2)	0,0245 (6)
C(5)	0,24869 (12)	-0,0273 (5)	0,4064 (2)	0,0274 (6)
C(6)	0,31146 (12)	-0,0291 (5)	0,4295 (2)	0,0276 (6)

Tableau 2. Paramètres géométriques (Å, °)

$P \rightarrow O(E1)$	1,485 (2)	C(1)C(2)	1,373 (4)
P-O(E2)	1,493 (2)	C(1)C(6)	1,377 (4)
PO(E3)	1,563 (2)	C(2)C(3)	1,386 (4)
P - O(L)	1,6062 (13)	C(3)C(4)	1,381 (4)
O(5)—C(4)	1,366 (3)	C(4)C(5)	1,387 (4)
N—C(1)	1,473 (3)	C(5)C(6)	1,382 (4)
O(E1)—P— $O(E2)$	118,55 (13)	C(6)C(1)N	119,8 (2)
O(E1) - P - O(E3)	106,45 (12)	C(1)—C(2)—C(3)	119,6 (3)
O(E2)PO(E3)	111,98 (12)	C(4)—C(3)—C(2)	119,7 (3)
O(E1) - P - O(L)	109,78 (9)	O(5)—C(4)—C(3)	121,8 (2)
O(E2)— P — $O(L)$	107,06 (9)	O(5)C(4)C(5)	118,0 (2)
O(E3) - P - O(L)	101,76 (13)	C(3)C(4)C(5)	120,1 (2)
$P^i - O(L) - P$	129,9 (2)	C(6)C(5)C(4)	120,2 (3)
C(2)C(1)C(6)	121,4 (2)	C(1)C(6)C(5)	119,1 (3)
C(2)-C(1)-N	118,7 (2)		

Code de symétrie: (i) $1 - x, y, \frac{3}{2} - z$.

Tableau 3. Distances et liaisons hydrogène (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	HA	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O(E3)H($OE3$)···O(5 ⁱ)	0,79 (4)	1,83 (4)	2,609 (3)	170 (4)
$O(5) - H(O5) \cdot \cdot \cdot O(E2^{ii})$	0,86 (4)	1,72 (4)	2,583 (3)	177 (4)
$O(W) - H(1W) \cdot \cdot \cdot O(E1^{iii})$	0,84 (4)	2,41 (4)	2,935 (3)	121 (3)
$O(W) - H(2W) \cdot \cdot \cdot O(E1^{iv})$	0,82 (7)	2,22 (7)	2,996 (4)	158 (6)
$N - H(1N) \cdots O(E1)$	0,92 (4)	1,92 (4)	2,845 (3)	176 (3)
$N = H(2N) \cdots O(W)$	0,95 (4)	1,88 (4)	2,825 (4)	172 (3)
$N = H(3N) \cdot \cdot \cdot O(E2^{v})$	0,94 (4)	1,97 (4)	2,835 (3)	152 (3)
Codes de symétrie: (i)	$-x, \frac{1}{2}$	-y, 1-z; (ii	$\frac{1}{2} - x, - \frac{1}{2}$	$\frac{1}{2} - y, 1 - z;$
(iii) $1 - x, -1 - \frac{1}{2}$	y, 1 - z;	(iv) x, y - 1, z	x; (v) x, -y,	$z - \frac{1}{2}$.

La largeur de balayage est $(0,80 + 0,35tg\theta)^{\circ}$. Les intensités ont été corrigées des facteurs de Lorentz-polarisation.

Collection des données: CAD-4 Software (Enraf-Nonius, 1989). Affinement des paramètres de la maille: CAD-4 Software. Réduction des données: MolEN (Fair, 1990). Programme(s) pour la solution de la structure: SHELXS86 (Sheldrick, 1985). Programme(s) pour l'affinement de la structure: SHELXL93 (Sheldrick, 1993).

Références

- Adams, J. M. & Ramdas, V. (1976). Acta Cryst. B32, 3224-3227.
- Adams, J. M. & Ramdas, V. (1977). Acta Cryst. B33, 3654-3657.
- Adams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2150-2156.
- Averbuch-Pouchot, M. T. & Durif, A. (1992a). Eur. J. Solid State Chem. 29, 411-418.
- Averbuch-Pouchot, M. T. & Durif, A. (1992b). Eur. J. Solid State Chem. 29, 191–198.
- Averbuch-Pouchot, M. T. & Durif, A. (1993). C. R. Acad. Sci. Paris, 316II, 187-192.
- Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Enraf-Nonius (1989). CAD-4 Software. Version 5,0. Enraf-Nonius, Delft, Les Pays-Bas.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Kammoun, S., Jouini, A. & Daoud, A. (1992). J. Solid State Chem. 99, 18-28.
- Kammoun, S., Jouini, A., Debbabi, M. & Daoud, A. (1990). Acta Cryst. C46, 420-422.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. de Göttingen, Allemagne.

Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Determination. Univ. de Göttingen, Allemagne.

Acta Cryst. (1995). C51, 1215-1218

Strukturuntersuchungen einer anorganischorganischen Spiroverbindung aus Cyclotriphosphazen und 9,10-Diaminophenanthren

URSULA DIEFENBACH

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany

HARRY R. ALLCOCK UND KARYN B. VISSCHER

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Eingegangen am 27. Juli 1994; angenommen am 24. November 1994)

Abstract

Spiro[4,4,6,6-tetrachloro- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -cyclotriphosphaza-1,3,5-triene-2,2,9',10'-diaminophenanthrene] tetrahydrofuran solvate, C₁₄H₁₀Cl₄N₅P₃.2C₄H₈O, was synthesized from hexachlorocyclotriphosphazene and 9,10-diaminophenanthrene in THF in the presence of triethylamine. It crystallizes from THF/hexane mixtures to give crystals which include two THF molecules attached to one molecule of the compound by weak hydrogen bonds between the NH groups and the THF O atoms. N—H···O bond distances are approximately 2.03 (4) Å. The cyclotriphosphazene ring is

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, et des distances et angles des atomes d'hydrogène ont été déposées au dépôt d'archives de l'UICr (Référence: DU1100). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.